Energy Efficiency Opportunities In Vehicle

Energy Efficiency Opportunities In Vehicle

Energy Efficiency Opportunities In Vehicle

Questions:

What Are Some Of The Processes Involved In The Vehicle Manufacturing Process?

Which Of These Vehicle Manufacturing Processes Are Energy Intensive?

How Can The Energy Usage In These Processes Be Reduced?

Which Are Some Of The Proposed Energy Efficiency Opportunities In The Vehicle Manufacturing Process?(Seog-Chan, 2016)

Answers:

Introduction

This energy efficiency opportunity is a significant component of the environmental strategy of any assembly plant. This proposal paper seeks to evaluate the process of motor vehicle assembly and the energy use in every stage. This is then followed by proposal on the energy efficiency opportunities for the assembly plant. The process of vehicle manufacturing includes engine and parts manufacture, vehicle body production, management, painting, and assembly. The vehicle assembly plant generates numerous components by itself, while other components are supplied to the company. Metal casting used in the manufacture of engines is a production process that is very energy intensive. This can be reduced through recycling of these parts by the metal casting industry so as to ensure energy efficiency in their materials used in their manufacture.

Energy is applied in numerous different ways during the vehicle assembly process. Fuels are majorly used during curing ovens of painting lines, steam application, and source heating. Electricity is used in the entire facility for numerous purposes such as welding, materials handling, painting by use of infrared curing or fans, air conditioning, ventilation, lighting, metal forming, and compressed air (Abraham, 2017).

Literature Review

The assembly of motor vehicles uses energy in the entire plants for numerous end-users. The major types of energies required during assembly process include compressed air, gas, steam, and electricity. Energy is applied to diverse categories of user-users in the facilities of vehicle assembly. Fuels are majorly used during curing of ovens for painting lines, steam applications, and space heating.

General Utilities

These are energy used during the general operations of the facility such as in lighting or shutting down machines when not using. There is a need for changing the behaviour of staff such as switching off lights when not using so as to save energy. There is need of changing how energy is managed through incorporating an energy management program that is organization-wide so as to ensure cost-effective and successful was of improving energy efficiency. There is need of the evaluating the specifications and conditions of motor systems that are used in the facility in cooling, refrigeration compressed air, and air conditioning (Agugliaro, 2011).

Motor Systems

These motor systems should be repaired and upgraded to ensure optimum performance and enable improvements in energy efficiency. This efficiency can be considered by taking the systems approach which strives to optimize the efficiency of the whole of the motor system such as driven systems like compressors, fans, and pumps, or in motors and drives. Constant maintenance of these motor systems ensure that there is unexpected downtime of the motors, these measures include lubrication, alignment, motor ventilation, load consideration, and voltage imbalance reduction (Anderson, 2003).

Compressed Air Systems

This the most expensive energy form used in the facility due to its poor efficiency. Insufficient maintenance of the compressed air systems calm reduce the efficiency of compression and increase pressure variability or air leakage, and result to increased temperatures of operation, excessive contamination, and poor control of moisture (Arthur, 2014).

Lighting

Lighting is used in the provision of general ambient light in the whole of the office spaces and manufacturing storage or in the provision of task lighting in specific regions. The sources of high-intensity discharge are used for storage and manufacturing sections such as mercury vapour lamps, high-pressure sodium, and metal halide. Lighting regulations can be performed by shutting off lights during non-operation hours by the use of automatic control like occupancy sensors (Backus, 2009).

Heating, Ventilation, And Air Conditioning

The HVAC involved air conditioning, ventilation, and heating systems and it involves a significant quantity of energy. Companies are currently improving their cooling and ventilation systems which respond to the present conditions within the facility, cooling output according to the demand or better matching ventilation. Building shell can also be incorporated to serve as insulation from cold or hot weather conditions. Modification of the fans can also save energy by regulating the flow of air and running at the design velocity (Beer, 2013).

Painting System

These are the major energy consuming section in the automobile facility and plants. The energy is used in conditioning air for drying and painting steps and also for treatment of emission and drying process. Energy efficiency can be improved in the painting systems through maintenance and management of painting lines, recovery of existing paint lines, and optimization of heat distribution. This can be attained by avoiding over-thinning water-born or solvent coatings through the addition of too much solvent, avoiding too large volumes of air in the air to fuel ration, and also maintaining the ventilation, humidity, and temperature to be within appropriate range for effective operation (Bunse, 2011).

High-Efficiency Inverter/Welding Technology

In high-efficiency inverter and welding, there is shut down of power during cooling fans and system idling, avoiding continuous consumptions of electricity. There will be improved power factor and provision of better electrical efficiency. Welding power of high efficiency provides a wider range of power compared to the traditional technologies (Research, 2009). Some companies such as Lincoln Electric for position welding and track welding have the implementation of multi-welding units which can permit a number of diverse welding machines to be operated by a single source of power. This will need no downtime for switching between their building fabrication and bridge, a higher rate of deposition, reduced cleanup time, and use of less power (Campana, 2017).

Research Objective

The main objective of this research is to evaluate the energy efficiency opportunities in the vehicle manufacturing process. These vehicle manufacturing processes majorly include engine and parts manufacture, vehicle body production, chassis, painting, and assembly. The researchers seek to evaluate these processes and determine the opportunities for energy efficiency so as to reduce the overall energy required during the manufacturing process. The opportunities realized can be implemented in the numerous assembly plants (Galitsky, 2010).

Theoretical Content/ Methodology

There are numerous theoretical approaches that vehicle assembly or manufacturing facilities can implement their processes to ensure energy efficiency in their operations. There approaches majorly target areas where energy is generally wasted while carrying out various activities in the assembly or manufacturing processes (Sutherland, 2012). Some of these areas include materials handling and tools, HVAC, lighting, compressed air system, motors system, general utilities, painting system, and body weld. There is need of establishment of formal management systems and structures for managing energy that aims at continuous improvement. These strategies are expected to assist the facility to manage energy use and implement energy efficiency measures (Ganapathy, 2009).

Energy straining programs can also be incorporated to train the employees at all levels about energy efficiency practices into their daily work routines and also the objective of the plant for energy efficiency improvement. The will ensure that all the employees their responsibilities towards ensuring energy efficiency in their normal activities (Muthulingam, 2014). Energy efficiency can be improved in the painting systems through maintenance and management of painting lines, recovery of existing paint lines, and optimization of heat distribution. This can be attained by avoiding over-thinning water-born or solvent coatings through the addition of too much solvent. These motor systems should be repaired and upgraded to ensure optimum performance and enable improvements in energy efficiency (Green, 2010).

This efficiency can be considered by taking the systems approach which strives to optimize the efficiency of the whole of the motor system such as driven systems like compressors, fans, and pumps, or in motors and drives. The motor management plan can also help the facility realize long-term motor system energy savings and will ensure that failures of the motor are handled cost effective and quick manner (Takahashi, 2011). Assembly facilities should also consider the implementation of multi-welding units which can permit a number of diverse welding machines to be operated by a single source of power. This will need no downtime for switching between their building fabrication and bridge, a higher rate of deposition, reduced cleanup time, and use of less power (Henriques, 2013).

Maintenance and monitoring can also lower the compression efficiency and increase pressure variability or air leakage, and result in increased excessive contamination, poor moisture control, and increased operating temperature. This will involves fans inspection, specific pressure regulators, and unblocking pipeline filters (Herrmann, 2011).

Experimental Setup

This research on the energy efficiency opportunities in vehicle assembly and manufacturing processes focuses on field setup in gathering data and evaluation of these data acquired from the numerous assembly plants and facilities. The big three automotive companies whose case studies can be used for the purposes of data acquisition include Daimler Chrysler Corporation, Ford Motor Company, and General Motors Corporation. The quantities of qualitative research borders on knowledge, skills as well as capabilities of researchers. The results may be personal because of the assumption that the outcomes are basically coming from the researcher’s judgments and personal interpretations. Indeed, this judgment is more appropriate for a small sample as used in this research. It is however not reliable for results of qualitative research to reflect the opinions of a wider population (Islam, 2011).

The respondents would be asked the questions regarding the energy efficiency opportunities that have been implemented or that can be implemented within the assembly facility to ensure efficiency in energy usage. Some of the questions include; what are some of the processes involved in the vehicle manufacturing process? Which of these vehicle manufacturing processes is energy intensive? How can the energy usage in these processes be reduced? Which are some of the energy efficiency opportunities in the vehicle manufacturing process? Respondents will also be allowed to make remarks on matters not enclosed by exact questions in the survey (Lee, 2010).

The participants of this research represent the total member of people by way of a complete headcount and everything the research seeks to uncover. The survey will be administered to a total of 50 participants. These participants were employees chosen at random in the numerous vehicle assembly plants in the country such as Ford Australia, General Motors, Toyota Australia, and Denning manufacturing. The major problems that are likely to be encountered by the research team during the field setup include geographical differences and also language barriers. Some of these companies are located in the different geographical area making it difficult to reach and carry out the research (Melamed, 2009).

Energy Efficiency Opportunities In Vehicle